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ABSTRACT In December 2019, China announced the breakout of a new virus identified as coronavirus
SARS-CoV-2 (COVID-19), which soon grew exponentially and resulted in a global pandemic. Despite strict
actions to mitigate the spread of the virus in various countries, COVID-19 resulted in a significant loss of
human life in 2020 and early 2021. To better understand the dynamics of the spread of COVID-19, evidence
of its chaotic behavior in the US and globally was evaluated. A 0–1 test was used to analyze the time-series
data of confirmed daily COVID-19 cases from 1/22/2020 to 12/13/2020. The results show that the behavior
of the COVID-19 pandemic was chaotic in 55% of the investigated countries. Although the time-series
data for the entire US was not chaotic, 39% of individual states displayed chaotic infection spread behavior
based on the reported daily cases. Overall, there is evidence of chaotic behavior of the spread of COVID-19
infection worldwide, which adds to the difficulty in controlling and preventing the current pandemic.

INDEX TERMS Chaotic behavior, COVID-19 pandemic, spread of infections, 0–1 test.

I. INTRODUCTION
In December 2019, the coronavirus SARS-CoV-2
(COVID-19) broke out in China and soon grew into a global
pandemic affecting almost every country worldwide [1]. The
virus is transmitted through human-to-human contact, and
infected individuals present with symptoms such as cough,
fever, headache, and breathing difficulties [2]. Several ele-
ments facilitate the spread of infection and severity of disease:
(1) close contact with infected individuals, (2) contact with
individuals who have been to locations with a considerable
number of confirmed COVID-19 cases, (3) efficiency and
speed of COVID-19 transmission, (4) susceptibility of indi-
viduals over 65, and (5) having underlying health conditions
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(e.g., respiratory problems, hypertension, cardiovascular dis-
ease, and diabetes) [2].

Governments around the world have imposed different
polices and undertaken preventive public health measures,
such as social distancing orders, travel restrictions, local
or national lockdown, and partial or complete border clo-
sures, to control the spread of the pandemic [3]. How-
ever, the COVID-19 pandemic remains one of the main
sources of death worldwide at the time of writing this article.
A better understanding of the underlying processes affecting
COVID-19 pandemic dynamics and related infection patterns
will help to improve the effectiveness of public health inter-
ventions worldwide.

Even though many different aspects of the COVID-19 pan-
demic have already been investigated, including the mecha-
nisms and rate of infection transmission, how fast it reaches
its peak, and how long it will last, it is difficult to accurately
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assess its dynamics [4]. Since the COVID-19 pandemic
started in one or more specific places in China and quickly
spread worldwide, it is reasonable to assume that it represents
a nonlinear complex phenomenon. One of the main factors of
complex systems is chaotic behavior, in which elements of the
system align and compete for survival [5]. Sensitivity to ini-
tial conditions renders chaotic systems unpredictable, espe-
cially long-term; however, chaotic systems can be described
by a few variables and equations [6]. Recently, Jones and
Strigul [6] concluded that the chaotic behavior of the spread
of COVID-19 represents a deterministic chaotic system. Such
knowledge will help to better understand the unpredictable
impact of small changes in a multitude of social, behavioral,
economic, and political conditions on the dynamics of infec-
tion, which should be considered when creating public health
management policies and mitigation strategies.

II. OBJECTIVES
To investigate the chaotic behavior of the COVID- 19 pan-
demic, we analyzed data from a total of 214 counties and
territories globally. Specifically, we aimed to confirm that
the COVID-19 epidemic displays chaotic behavior based on
the analysis of time-series data of reported daily infections.
Firstly, we investigated the spread of infection in different
US states, followed by its behavior in other countries around
the world. The present article is structured as follows: the
background section discusses the objectives and conclusions
of published articles concerning the chaotic behavior of pan-
demics; the methodology section explains the binary 0–1 test
for chaos using time-series data; the results section represents
the outcomes of the 0–1 test; and the discussion section
explains the results.

III. BACKGROUND
The dynamics of the spread of pandemics are similar to
the behavior of other nonlinear systems including chaotic
maps and turbulent flows [7]. In such systems, a small
seed increases exponentially and then saturates; in general,
chaotic behavior indicates that the system is extremely sen-
sitive to the initial conditions. Some of the distinguishing
features of nonlinear behavior can be used to analyze
human pandemics. Many studies have investigated the
deterministic chaotic dynamics of pandemics. Matouk [8]
developed a susceptible-infected model with multi-drug
resistance (SIMDR) and its fractional-order counterpart to
predict the spread of the COVID-19 infection. In this com-
partmental model, the dynamics of one class of susceptible
population and three classes of infected populations were
investigated. The fractional-order counterpart of the model
was considered with a view to achieving a higher degree of
freedom and accuracy of modeling. Numerical tools of Lya-
punov exponents (LEs), Lyapunov spectrum, and bifurcation
diagramswere used to study the complex dynamics of the sys-
tem. LE can be used to assess chaotic behavior by calculating
the divergence rate of trajectories in the phase space; positive
LE may indicate chaotic behavior, while negative LE does

not generally represent stability [9]. The study by Matouk [8]
verified the existence of chaotic attractors for the integer-
order model and its fractional-order, and indicated that the
fractional-order model was more realistic than its integer-
order SIMDR model in explaining real epidemics data.

Other studies have investigated the chaotic behavior
of different epidemics such as Rift Valley fever, child-
hood diseases, and epizootic outbreaks. Pedro et al. [10]
developed a susceptible-asymptomatic-infectious-recovered
compartmental model to investigate the Rift Valley fever
epidemic. The study used a variety of nonlinear analysis
tools, including bifurcation diagrams, maxima return maps,
Poincaré maps, and LEs to investigate the nonlinear dynam-
ics of the system. Billings and Schwartz [11] developed a
susceptible-exposed-infectious-recovered (SEIR) model to
forecast outbreaks of childhood diseases by adding stochas-
tic perturbations to model parameters and LEs to identify
chaotic behavior. Sun et al. [12] proposed a susceptible-
infectious-recovered-susceptible (SIRS) model, and demon-
strated the model’s chaotic properties based on LE indices.
Eilersen et al. [13] described an eco-epidemiological model
with a two-prey one-predator ecosystem, where one carries
a disease. To assess whether the dynamic model is chaotic,
the study determined the LE. Following an epizootic out-
break, chaotic behavior occurred in the system at different
ranges of model parameters. The study indicated that chaos
mostly occurs when the disease spreads into more prey
species. Interestingly, the study verified chaotic behavior in
a relatively minimal eco-epidemiological system [13].

Several articles have investigated chaotic behavior under
specific environmental and geographic conditions, includ-
ing the presence of noise, presence of seasonality, impacts
of locations (small and big cities), and impacts of
compartmental models. He and Banerjee [14] analyzed a
fractional-order susceptible-infectious-recovered (SIR) epi-
demic system under the conditions of external noise and
parametric seasonality. Although an integer-order SIR system
exhibited stable behavior, the fractional-order SIR epidemic
model in the presence of noise and seasonality forces showed
strong patterns of nonlinear dynamic changes. This study uti-
lized numerical tools, such asMFuzzyEn and the largest posi-
tive LE, and reported rich dynamic behaviors based on system
parameters, degree of noise and seasonality, and fractional
derivative order. The study concluded that the infectious dis-
ease outbreak could be controlled by applying efficient health
and medical measures [14]. Yi et al. [15] investigated the
dynamic behavior of an SEIR compartmental model with sea-
sonality in relation to the transmission rate. The study applied
bifurcation diagrams, Poincaré maps, LEs, and Lyapunov
diagrams to investigate the periodic, chaotic, and hyper-
chaotic behaviors of the system. Grenfell et al. [16] used a
time-series-susceptible-infected-removed (TSIR) model to
determine the dynamic features of measles epidemics in
various cities.

The study indicated that the epidemic model could accu-
rately determine the dynamic features of the long-term
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behavior of measles in big cities. Based on LEs, the results
indicated that small cities are more predictable and stable
than larger cities. Li et al. [17] applied a numerical simu-
lation and qualitative analysis to investigate a discrete-time
susceptible-infectious (SI) compartmental model using the
Euler scheme to transform the continuous model into a dis-
crete epidemic model. The complex dynamics of the sys-
tem were investigated through transcritical bifurcation, Hopf
bifurcation, and flip bifurcation. The results indicated that the
discrete-time epidemic model has a richer dynamic behavior
than the corresponding continuous-time model [17].

Several of the reviewed studies utilized an assessment of
LE to draw conclusions regarding evidence of chaotic system
behavior. In general, a positive LE value is an indicator of the
potential for deterministic chaos in a system whose equations
are known; however, for the examined time-series data used
in the present study, an LE >0 may not be a sufficient
indicator of chaotic behavior since the system equations are
unknown [18]. It should also be noted that other studies
applied fractal analysis to assess the spread of COVID-19
around the world [19]–[21].

A powerful computational alternative to confirm chaotic
system properties is a 0–1 test. This test, first proposed by
Gottwald and Melbourne [22], [23] and later improved by
Gottwald andMelbourne [24], does not rely on the underlying
equation of a system. Also, the 0-1 test is not computa-
tionally intensive and does not require phase space recon-
struction of the investigated system. The test results close to
1 indicate the presence of chaos, while closer to 0 indicates
lack of chaos.

He et al. [25] used an SEIR compartmental model and
applied a particle swarm optimization (PSO) algorithm to
determine parameters of the model representing the evolu-
tion of the COVID-19 pandemic in Hubei province, China.
The study also used the 0–1 test to verify the presence of
chaos in the system, indicating that the system could produce
chaotic behavior in the presence of seasonality and stochas-
tic infection. Recently, Ahmed and Matouk [26] developed
an antimicrobial resistance (AMR) model containing both
classes of susceptible and resistant features. The study inves-
tigated complex dynamics including the existence of homo-
clinic connections, flip bifurcations, multiple closed invariant
curves, and coexistence of multiple attractors. The 0–1 test
was successfully applied to verify the existence of chaotic
behavior in the system.

IV. METHODOLOGY
This section outlines the methodology for the determination
of deterministic chaos using the 0–1 test and discusses rele-
vant COVID-19 infection time-series data.

A. DETERMINATION OF DETERMINISTIC CHAOS USING
THE 0–1 TEST
The applied 0–1 test procedure using the notation outlined by
Gottwald and Melbourne [24] is provided in Appendix.

B. COVID-19 DATA SOURCE AND PROCESSING
The data used in the present study were collected from
Johns Hopkins University (JHU) Center for Systems Science
and Engineering (CSSE) COVID-19 Data [27], available
in the GitHub online publication by Dong et al. [28]. The
files used were ‘time_series_covid19_confirmed_US.csv’
(i.e., US data), containing county-level confirmed cases
of COVID for all US states and territories, and ‘time
series_covid19_deaths_global. csv’ (i.e., global data),
containing similar data for countries and territories
worldwide.

The aggregated data sources for these data included World
Health Organization (WHO), European Centre for Disease
Prevention and Control (ECDPC), US Center for Disease
Control (CDC), BNO News, WorldoMeters, COVID Track-
ing Project, Los Angeles Times, and The Mercury News.
In addition, the data provided by the entities authorized
to release COVID-19-related data in each country world-
wide were utilized. For US states and territories, data
released by the county-level authorized bodies were used
as the source of the COVID-19 data. These data were
adjusted accordingly if any discrepancy was observed or
reported. As of 4/26/2021, Google Scholar revealed a total
of 4,170 cited data sources [28] when a search using
the phrase ‘‘An interactive web-based dashboard to track
COVID-19 in real-time’’ was used. Hence, we were able to
assure the desired level of data quality control and the upkeep
of the data used in the present study.

Data processing was performed using MATLAB
(ver. R2020) and pandas (ver. 1.2.0), an open-source data
analysis and manipulation library in Python programming
language. The two databases used in this study provide
the cumulative confirmed cases of COVID-19 by date. For
example, daily cumulative COVID-19 time series data can be
mathematically shown as:

yt =
∑t

i=1
ydi ∀t ∈ T (1)

where yt is the cumulative count of COVID-19 confirmed
cases for day t , ydt is the daily count of confirmed COVID-19
cases at any day t , and T is the number of days contained in
the duration of the time series data, i.e., t = 1, 2, 3, . . . ,T−2,
T − 1, T . To calculate ydt , one can simply use the following
mathematical operation.

ydt = yt − yt−1 ∀t ∈ T (2)

In this study, the US data between 1/22/2020 and
12/13/2020 (a day before the COVID vaccination started
in the US) were selected for analysis. These county-level
cumulative data were first converted into the daily count of
confirmed cases using (2) for each county and later grouped
by state and territory to secure one time-series data per
state/territory for the date range mentioned above. A similar
approach was utilized for the global data to identify the daily
count of confirmed COVID-19 cases.
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TABLE 1. K-median values from the 0–1 test for confirmed daily COVID-19 cases in the US by state.

V. RESULTS
The results of the 0–1 test for chaotic behavior of the spread
of COVID-19 infection based on the daily count of confirmed
cases in the US and globally are discussed below.

A. SPREAD OF COVID-19 INFECTION IN THE US
For the US, the time-series data for each state from the
day of the first confirmed case (COVID-19 infection) were
used. The K-median values from the 0–1 test were used
to signify whether the time-series infection data exhibited
deterministic chaos. The time-series data with K-median val-
ues at or greater than 0.9 were classified as chaotic, and
those with K-median values less than 0.9 were classified as
non-chaotic.

The results show that the spread of COVID-19 infec-
tion in 19 out of 50 states was chaotic (39.2%). The states
that showed chaotic behavior in the examined time-series

data for daily infections were Alabama, Delaware, District
of Columbia, Florida, Georgia, Hawaii, Kansas, Louisiana,
Mississippi, Missouri, Nebraska, Oklahoma, South Carolina,
South Dakota, Tennessee, Texas, Vermont, Washington, and
Wisconsin. Table 1 shows the K-median values from the 0–1
test for the confirmed daily COVID-19 cases by US state.
In addition, Figure 1 illustrates a geographical map of US
states, with the red color signifying chaotic behavior of the
time-series data representing daily spread of infections.

B. SPREAD OF COVID-19 INFECTION ON A
GLOBAL SCALE
The results of the 0-1 test with K-median values for the
daily count of confirmed cases of COVID in different con-
tinents, countries and territories on the global scale are
depicted in Tables 2 and 3 and are illustrated in Figures 4-5.
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FIGURE 1. K-median values from the 0–1 test for confirmed daily
COVID-19 cases in the US.

TABLE 2. Results from 0-1 test for chaos for daily COVID-19 confirmed
cases globally (excluding the United States).

Figure 4 shows the geographical map with red color signi-
fying chaotic behavior. Overall, 118 countries out of a total
of 213 countries/territories (55%) exhibited chaotic behavior
of the spread of COVID-19 infections. The Department of
Economic and Social Affairs of the United Nations Sec-
retariat (UN/DESA) classifies all countries and territories
into three broad categories: 1) developed economies, 2)
economies in transition, and 3) developing economies based
on various econometric measures [29]. Table 4 shows that
the proportion of developing countries or territories showing
chaotic time series of daily confirmed COVID-19 cases was
68.3% (110 out of 161). In contrast, the same proportion for
the developed and ‘in-transition countries or territories was
13.9% (5 out 36) and 18.8% (3 out of 16), respectively. This
data indicates that Europe still was better off in terms of
the proportion of countries with chaotic spread of infections
(11 out of 32 or 34.4%). In contrast, the same figure was
86% for Sub-Sharan Africa and 70% for Latin America and
the Caribbean (Table 5). The above provides convincing evi-
dence that the likelihood of these countries and territories to

FIGURE 2. Examples of confirmed daily COVID-19 cases for states
showing chaotic behavior.

FIGURE 3. Examples of confirmed daily COVID-19 cases for states
showing non-chaotic behavior.

FIGURE 4. Results of the 0–1 test for confirmed daily COVID-19 cases
globally.

have chaotic behavior in COVID-19 daily infection number
is greater than that of their Asian counterpart, where this
proportion was only 46.4% (13 out of 28), with Japan being
designated as ‘developed’ country and removed from the
calculation shown in Table 2.

VI. DISCUSSION
In the present study, only confirmed daily COVID-19 cases
were subjected to nonlinear dynamics analysis. The available
data for the number of hospitalizations, daily number of
deaths, and number of recoveries were not considered here.
While the time-series data for daily infections in the entire US
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TABLE 3. Results of the 0–1 test for specific countries/territories (N = 213).
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TABLE 3. (Continued) Results of the 0–1 test for specific countries/territories (N = 213).
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TABLE 3. (Continued) Results of the 0–1 test for specific countries/territories (N = 213).

were not found to be chaotic, results of the state-level analysis
indicate that the confirmed COVID-19 infections for more
than 35% of the states showed chaotic behavior. It should be

noted that the US is one of the largest countries in the world
and many of its states are comparable with other countries
with respect to population size.
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FIGURE 5. Examples of confirmed daily COVID-19 cases for countries
showing chaotic behavior.

TABLE 4. Economic status of the countries and time series data of
daily-confirmed cases (excluding the United States).

Given the fact that Italy, Spain, and the United Kingdom
were greatly affected at the beginning of the pandemic in
Europe, we also expected that such countries would also
exhibit chaotic behavior in their reported daily infection data;
however, this was not the case. It can be hypothesized that if
the spread of infection in these countries was analyzed on a
smaller scale— by recognized regions— the results may be
different. For example, England (part of the UK) has nine
recognized regions, and if London were to be considered
separately, England alone would have ten-fold more data
as compared with, for example, merged infection data for
Northern Ireland and Scotland. In Asia, a similar situation
could occur in countries such as India due to their large geo-
graphic size (28 states and 8 Union Territories) and massive
population.

VII. LIMITATIONS OF THE STUDY
We note several limitations of our methodology and results.
The present study did not consider other important factors

that may play a vital role in providing the ability to assess
dynamics of the spread of COVID-19 infection, including
for example, demographic and socioeconomic data such as
income, education, employment, proportion of people under
the poverty line, total population, population density, or urban
vs. non-urban population. In addition, data regarding the
relevant sociopolitical factors, government regulations, and
public health policies should also be considered to improve
our understanding of the nonlinear dynamics of the spread of
COVID-19 infection worldwide and develop effective coun-
termeasures. In future work, the largest Lyapunov exponent
of each time-series data for daily infections should also be
assessed to verify the current results.

VIII. CONCLUSION
In the present study, time-series data representing the
spread of infections based on the confirmed daily
cases of COVID-19 during the period of 1/22/2020 to
12/13/2020 were investigated for the presence of chaos. The
results showed that in most countries and territories irrespec-
tive of the continent, the data spread of COVID-19 infection
exhibited chaotic behavior. The nature of deterministic chaos
data renders it difficult to predict the dynamics of a pandemic
in the long term [30].

Finally, our results confirm the conclusions made by Jones
and Stirgul [6], who suggested that the COVID-19 epi-
demic demonstrates chaotic behavior that should inform
future public health policies. Clearly, other data regarding
the relevant sociopolitical factors, government regulations,
and public health policies should be considered to improve
our understanding of the nonlinear dynamics of the spread
of COVID-19 infection worldwide and develop effective
countermeasures. In addition, an evolutionary self-organizing
map (ESOM) methodology [31] should be applied in the
future to test the predictability of infection spread models.

APPENDIX: PROCEDURE FOR 0–1 TEST
The 0–1 test procedure using the notation outlined by
Gottwald and Melbourne [24] is as follows:
Step 1. Define a time series x(t) for t = 1,. . . , N, where

x(t) is the time-series value at time t. Additionally, define
a set C ∈ < of non-negative random values. Gottwald and
Melbourne [24] suggested random values forC in the interval
(0, π ); therefore, in the present study, values for C are in
the interval (π /5, 4π /5) to avoid resonances distorting the
statistics. While c = 0 must be avoided, and exclusion of
c = π , is not necessary, the authors found the above proce-
dure helpful.
Step 2. For each c: c ∈ C , and n = 1, 2, . . . ,N , compute

the translation variables pc(n) and qc(n) as follows:

pc(n) =
∑n

t=1
x(t) cos tc, and qc(n)

=

∑n

t=1
x(t) sin tc, for n = 1, 2, . . . ,N (3)

After step 2, this procedure generatesN sets pc(n) and qc(n)
for each c: c ∈ C considered.
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Step 3. Compute the mean square displacement for the
translation variables (i.e., Fourier coefficients) pc(n) and
qc(n) as follows:

Mc(n) = lim
N→∞

1
N

∑N

t=1
[pc (t + n)− pc (t)]2

+[qc (t + n)− qc(t)]
2 (4)

According to Gottwald and Melbourne [23], [24], for the
time series with regular dynamics, the mean square displace-
ment is a bounded function in time whereas it scales linearly
with time (n) if the time series is chaotic. In such a case,
the plot of pc(n) vs. qc(n) looks like an irregular not bounded
function in time. Gottwald andMelbourne [24] suggested that
this definition of mean square displacement requires that be
much less than N or n � N . Gottwald and Melbourne [24]
also suggested selection of n such that n < ncut where ncut =
N/10, and reported that this scheme of selecting n produced
good results (plots) showing regular dynamics and chaotic
dynamics clearly in a pc(n) vs. qc(n) graph.
Step 4. TheMc(n) vs. n plot shows increasing linearity with

n; however, there is an oscillation confounded with Mc(n).
To smooth this oscillation, Gottwald and Melbourne [24]
suggested using the modified mean square displacement for
the translation variables, which can be defined as follows:

Dc(n) = Mc(n)− Vosc(c,n) (5)

where Vosc (c, n) = (Ex)2 1−cos nc1−cos c and Et = lim
N→∞

1
N∑N

t=1 x(t)
Step 5. Finally, Dc(n) s values from step 4 were used to

estimate the asymptotic growth rate,Kc. Using the correlation
method, the asymptotic growth rate Kc can be calculated as
follows:

Kc =
cov(ξ,1)

√
var (ξ) var(1)

∈ [−1, 1] (6)

where ξ = (1, 2, . . . , ncut) and 1 = (Dc (1), Dc (2), . . .,
Dc(ncut)) and cov(ξ , 1) is the covariance between vectors ξ
and 1. Finally, Gottwald and Melbourne [32] also provided
theoretical proof that their test yields a value of 0 for periodic
and quasi-periodic dynamics and a value of 1 for nonlin-
ear (chaotic) systems.
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